

André Gustavo Salcedo Teixeira Mendes

Impactos da Criação do Mercado Interruptível de Gás Natural

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio.

Orientador: Prof. Álvaro de Lima Veiga Filho

Co-orientador: Mário Veiga Ferraz Pereira

Rio de Janeiro Junho de 2006

André Gustavo Salcedo Teixeira Mendes

Impactos da Criação do Mercado Interruptível de Gás Natural

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Álvaro de Lima Veiga Filho Orientador Departamento de Engenharia Elétrica – PUC-Rio

> Prof. Mario Veiga Ferraz Pereira Co-orientador PSR Consultoria Ltda

Profa. Mônica BarrosDepartamento de Engenharia Elétrica - PUC-Rio

Prof. Sérgio Granville PSR Consultoria Ltda

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico

Rio de Janeiro, 23 de junho de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

André Gustavo Salcedo Teixeira Mendes

Graduou-se em Engenharia de Produção e Elétrica na PUC-RJ em 2000 na área de Sistemas de Apoio à Decisão e Controle de Processos. Atuou em análise de risco de mercado e financeiro no Banco do Brasil. Atualmente trabalha na Área de Mercado de Capitais do Banco Nacional de Desenvolvimento Econômico e Social – BNDES.

Ficha catalográfica

Mendes, André Gustavo Salcedo Teixeira

Impactos da Criação do Mercado Interruptível de Gás Natural / André Gustavo Salcedo Teixeira Mendes ; orientador: Álvaro de Lima Veiga Filho ; co-orientador: Mário Veiga Ferraz Pereira. – Rio de Janeiro : PUC-Rio, Departamento de Engenharia Elétrica, 2006.

94 f.; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica

Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Mercado secundário. 3. Mercado flexível. 4. Contratos de fornecimento interruptível. 5. Gás natural. 6. Otimização estocática. 7. Programação linear. 8. Risco de contratação. I. Veiga Filho, Álvaro de Lima. II. Pereira, Mário Veiga Ferraz. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 624

À minha família. À minha esposa Aline.

Agradecimentos

À minha família, pela educação e apoio em todas as etapas da minha vida, em especial à minha esposa Aline pelo carinho, amor e suporte neste longo trabalho.

Aos colegas e amigos do Banco do Brasil pelo incentivo em iniciar o Mestrado, dentre eles cito, Francisco Cláudio Duda, Francisco Mamede, Augusto Frederico e Luiz Gonzaga.

Em especial, agradeço ao orientador Mario Veiga Pereira pela oportunidade de realização deste trabalho e pela orientação indispensável em todas as etapas do desenvolvimento. Dentre os integrantes da sua equipe, destaco Luiz Augusto Barroso pela inabalável disposição na ajuda em confeccionar este trabalho.

Ao professor e orientador Dr. Álvaro Lima Veiga pelas aulas, motivação e estímulo nestes anos.

Aos amigos Raphael Chabar e Alexandre Street pelo incentivo e ajuda, de forma direta e indireta, para a realização deste trabalho.

Às empresas PSR e Mercados por disponibilizarem espaço e infra-estrutura imprescindíveis ao desenvolvimento deste trabalho.

À PUC-Rio, pelos auxílios concedidos e pela ótima infra-estrutura.

Resumo

Mendes, André Gustavo Salcedo Teixeira; Veiga Filho, Álvaro de Lima (Orientador). **Impactos da Criação do Mercado Interruptível de Gás Natural**. Rio de Janeiro, 2005, 94p. Dissertação de Mestrado – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio).

O desenvolvimento da indústria de Gás Natural pelo mundo resultou em um processo de integração entre os setores de gás natural e eletricidade em diversos países. Entretanto, em alguns casos, como o Brasil, apesar de a demanda de gás para uso convencional (industrial, comercial, residencial, GNV) ter crescido a taxas relativamente altas, ela sozinha ainda não justifica novos grandes investimentos na produção e no transporte de gás. Verifica-se que, neste caso, o setor de energia desempenha um papel indispensável por se tratar do maior mercado potencial de gás natural, com a escala suficiente para ser a âncora de demanda que viabiliza os investimentos em produção e transporte do gás. Todavia, devido à predominância hidrológica no sistema elétrico Brasileiro, o despacho das térmicas é bastante volátil e, por consequência, o consumo de gás das térmicas é bastante variável. Assim, o produtor de gás está sujeito a um fluxo de caixa muito volátil e incerto e cláusulas de compra compulsória de gás (takeor-pay) e de remuneração do custo da infra-estrutura (ship-or-pay) são observadas. Enquanto estas cláusulas trazem certeza necessária para viabilizar a produção, elas oneram excessivamente os custos das Usinas Térmicas, que se vêem obrigadas a pagar pelo combustível e, portanto, gerar, mesmo quando o preço da energia esteja inferior ao seu custo marginal de produção. Tendo em vista este cenário, foi recentemente discutida no âmbito do Governo Federal a criação de um mercado flexível de gás natural, onde contratos interruptiveis de gás (lastreados no take-or-pay das térmicas) seriam fornecidos a consumidores industriais. Nestes contratos, o fornecimento seria interrompido se a Usina Térmica fosse despachada. O objetivo desta tese é analisar a criação deste mercado sob a ótica dos consumidores. Será verificada a "disposição" a pagar por um contrato interruptível de gás levando em consideração a incerteza associada ao suprimento (que depende da prioridade de uso do gás pelas térmicas) e o perfil de risco destes consumidores.

Palavras-chave

Engenharia Elétrica, Mercado Secundário, Gás Natural, VAR, Otimização Estocástica, Programação Linear, Risco de Contratação

Abstract

Mendes, André Gustavo Salcedo Teixeira, Veiga Filho, Álvaro de Lima (Advisor). **Impacts due to the Creation of a Secondary Market of Natural Gas.** Rio de Janeiro, Rio de Janeiro, 2006. 94p. MSc. Dissertation - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

With the development of the gas industry worldwide, a process of strengthening the integration between the natural gas and the electricity sectors is underway in several countries. However, although gas demand has been growing at relatively high rates, this demand growth solely is unlikely to justify new large investments in gas production and transportation. This means that the power sector ends up being the largest potential market for natural gas, with the needed scale to provide the necessary anchor demand to spur these production and infrastructure investments. The hydro predominance in the country creates volatility on the dispatch of the gas-fired plants, which ends up creating an undesirable (from the gas-sector point of view) volatility in the natural gas consumption. Since the gas-market is still incipient, gas contracts are typically of long-term with high "take or pay" and "ship or pay" clauses to ensure financing of the production-transportation infrastructure. From the power sector point of view, these clauses are undesirable: due to the uncertainty of dispatch gas-based generators want to negotiate a higher flexibility. As such, the aim of this work is to determine the impacts due to the creation of a flexible (secondary) gas market from the costumers' point of view. It will be also developed the costumers' willto-contract curve, which will take into account the uncertainty of thermoelectric dispatch (that rules the gas availability over this new proposed market) and the risk-profile of costumers.

Keywords

Electrical Engineering, Secondary Market, Natural Gas, VAR, Stochastic Optimization, Linear Programming, Contract RisksSumário

Sumário

1 INTRODUÇÃO	13
1.1 Imperfeições do Mercado de Gás Natural	13
1.1.1 Importância das Térmicas	14
1.1.2 Volatilidade do Despacho Térmico em Sistemas Hidrotérmicos	15
1.1.3 Cláusulas de <i>Take-or-Pay/Ship-or-Pay</i>	15
1.1.4 Estratégia Operativa da Usina Termoelétrica	
1.2 Mercados Flexíveis	
1.2.1 Pontos Relevantes	
1.3 Objetivo	19
1.4 Organização da Tese	19
2 O MERCADO DE GÁS NATURAL	21
2.1 Reservas e Oferta de Gás Natural	
2.2 Exploração, Produção, Transporte e Distribuição	24
2.3 Consumo	
3 OPERAÇÃO DAS TÉRMICAS E SISTEMAS HIDROTÉRMICOS	28
3.1 Sistemas Hidrotérmicos	
3.1.1 Custos de oportunidade	
3.1.2 Árvore de decisões	
3.1.3 Custos Operacionais Imediatos e Futuros	
3.1.4 Valor da água	
3.1.5 Formulação do Despacho Hidrotérmico para uma Etapa	
3.1.6 Solução do Problema e Custos Marginais	
3.1.7 Exemplo	
3.2 Cálculo da Função de Custo Futuro	
5.2 Calculo da Fulição de Custo Futuro	30
4 MERCADO FLEXÍVEL DE GÁS	37
5 EQUILÍBRIO ENTRE RISCO E GANHO	
5.1 O Modelo de Otimização de Portfolios de Markowitz	43
5.2 Value at risk (VaR)	47
5.3 Downside Risk	48
5.4 Arrependimento	52
5.5 Funções de Utilidade	52
5.5.1 O Equivalente à Certeza	53
5.5.2 Exemplo	54
6 CÁLCULO DO VOLUME DE GÁS NATURAL DISPONÍVEL PAR	RA O
MERCADO FLEXÍVEL	
6.1 Estudo de Caso	

7 CURVA DE DISPOSIÇÃO A CONTRATAR DOS CONSUMIDOR	ES 61
7.1 Cálculo da despesa	62
7.2 Formação da CDC	
7.3 Medida de aversão ao risco	
7.3.1 Exemplo	74
8 PERFIL DE AVERSÃO AO RISCO DOS CONSUMIDORES	76
9 CÁLCULO DO PREÇO DE EQUILÍBRIO DO LEILÃO POR M	
CDC	78
9.1.1 Simulação do Leilão	80
10 CONCLUSÕES E TRABALHOS FUTUROS	82
11 REFERÊNCIAS BIBLIOGRÁFICAS	85
ANEXO I – Despacho Hidrotérmico Centralizado	87
ANEXO II – Contratos de Combustível com Cláusulas de <i>Take-or-Pay</i>	
ANEXO III – CÁLCULO DA FUNÇÃO DE CUSTO FUTURO EM SIS	STEMAS
HIDROTÉRMICOS	
ANEXO IV – Relação entre Valor Esperado da Renda e Equiv	
Certeza	

Lista de Figuras

Figura 1.1 – Redução da Demanda devido à criação do Mercado Flexível	de
Gás Natural	18
Figura 2.1 – Estrutura física do setor de gás natural (Fonte: Petrobrás)	24
Figura 2.2 – Esquema ilustrativo das etapas de exploração, produção, transporte	e e
distribuição.	25
Figura 3.1 – Processo Decisório em Sistemas Hidrotérmicos	29
Figura 3.2 – Custos Imediatos e Futuros contra Armazenamento Final	30
Figura 3.3 – Cálculo da FCF	31
Figura 3.4 – Programação Hidrelétrica Ótima	32
Figura 3.5 – Balanço hídrico do reservatório	33
Figura 3.6 – Função de Custo Futuro.	35
Figura 4.1 – Histórico de preços spot do Sudeste (janeiro/00 a julho/06)	37
Figura 4.2 – Projeção da demanda total (distribuidora + lastro + refinarias	da
Petrobrás)	39
Figura 5.1 – Distribuição da Geração	44
Figura 5.2 – Medida de Risco	45
Figura 5.3 – Portfolios de Variância Mínima	46
Figura 5.4 – O Conceito de VaR	47
Figura 5.5 – Distribuições de Retorno Assimétricas	49
Figura 5.6 – Fronteira Eficiente – Downside Risk	50
Figura 5.7 – Tipos de Função de Utilidade	53
Figura 5.8 – Calculo do Equivalente a Certeza (avesso a risco)	54
Figura 5.9 – Possível Função Utilidade	55
Figura 5.10 – Equivalente a Certeza	56
Figura 6.1 - Percentual de Gás utilizado pelas Usinas Térmicas ao longo	do
período 2010-2012	59
Figura 7.1 – Curva de Disposição a Contratar – Caso Simplificado	65
Figura 7.2 – Exemplificação Gráfica do Problema	67
Figura 7.3 – Exemplificação Gráfica do Problema (1)	67
Figura 7.4 – Exemplificação Gráfica do Problema (2)	68

Figura 7.5 – Exemplificação Gráfica do Problema (3)
Figura 7.6 – Curva de Disposição a Contratar – Sem restrição de risco
Figura 7.7 – Representação Gráfica do problema com restrição de risco (1)71
Figura 7.8 - Representação Gráfica da adaptação gerada pela restrição de
risco (1)
Figura 7.9 – Representação Gráfica do problema com restrição de risco (2) 73
Figura 7.10 – Representação Gráfica da adaptação gerada pela restrição de risco
(2)73
Figura 7.11 – Curva de Disposição a Contratar – Caso Hipotético com Restrição
de Risco
Figura 7.12 - Curva de Disposição a Contratar de 5 consumidores - Caso
Hipotético com Restrição de Risco75
Figura 8.1 – Distribuição do consumo industrial de gás para geração de energia –
Fonte: Ministério das Minas e energia76
Figura 9.1 – Estratégia de Contratação de Cada Consumidor
Figura 9.2 – CDC Acumulada
Figura 9.3 – CDC Agregada com Preço de Equilíbrio do Leilão81
Figura A.1 – Histórico de preços spot do Sudeste
Figura A.1 – Definição dos Estados do Sistema
Figura A.2 – Cálculo da Decisão Ótima por Cenário - Último Estágio91
Figura A.3 – Cálculo do primeiro segmento da FCF
Figura A.4 – FCF Linear por partes para o Estágio T-192
Figura A.5 – Cálculo do custo operativo para o estágio T-1 e FCF para T-2 93

Lista de Tabela

Tabela 2.1 – produção doméstica de gás natural (fonte: ANP)	23
Tabela 2.2 – Vendas anuais de gás natural pelas distribuidoras (fonte: ANP)	27
Tabela 3.1 – Características da Hidrelétrica	34
Tabela 3.2 – Despacho Ótimo – Sistema Hidrotérmico.	35
Tabela 5.1 – Geração das Usinas	43
Tabela 8.1 – Consumidores	76
Tabela 8.2 – Consumidores (Perfil de Risco e Preco Alternativo)	77